Paper: Integrated magnetometers

06 Nov 2023

Abstract

Optomechanical magnetometers enable highly sensitive magnetic field sensing. However, all such magnetometers to date have been optically excited and read-out either via free space or a tapered optical fiber. This limits their scalability and integrability, and ultimately their range of applications. Here, we present an optomechanical magnetometer that is excited and read-out via a suspended optical waveguide fabricated on the same silicon chip as the magnetometer. Moreover, we demonstrate that thermomechanical noise limited sensitivity is possible using portable electronics and laser. The magnetometer employs a silica microdisk resonator selectively sputtered with a magnetostrictive film of galfenol (FeGa) which induces a resonant frequency shift in response to an external magnetic field. Experimental results reveal the retention of high quality-factor optical whispering gallery mode resonances whilst also demonstrating high sensitivity and dynamic range in ambient conditions. The use of off-the-shelf portable electronics without compromising sensor performance demonstrates promise for applications.

Browse Figures

Authors

Fernando Gotardo
Benjamin Carey
Hamish Greenall
Glen Harris
Erick Romero
Douglas Bulla
Elizabeth Bridge
James Bennett
Scott Foster
Warwick Bowen

Copyright © 2025 University of Queensland

UQ Privacy Policy